@inproceedings{jin2025lorvp,title={LoR-{VP}: Low-Rank Visual Prompting for Efficient Vision Model Adaptation},author={Jin, Can and Li, Ying and Zhao, Mingyu and Zhao, Shiyu and Wang, Zhenting and He, Xiaoxiao and Han, Ligong and Che, Tong and Metaxas, Dimitris N.},booktitle={The Thirteenth International Conference on Learning Representations},year={2025},url={https://openreview.net/forum?id=5btFIv2PNb},}
@inproceedings{jin2025apeer,title={APEER: Automatic Prompt Engineering Enhances Large Language Model Reranking},author={Jin, Can and Peng, Hongwu and Zhao, Shiyu and Wang, Zhenting and Xu, Wujiang and Han, Ligong and Zhao, Jiahui and Zhong, Kai and Rajasekaran, Sanguthevar and Metaxas, Dimitris N},booktitle={Companion Proceedings of the ACM Web Conference 2025},location={Sydney, NSW, Australia},series={WWW '25},year={2025},doi={10.1145/3701716.3717574},isbn={979-8-4007-1331-6/2025/04},url={https://arxiv.org/abs/2406.14449},publisher={Association for Computing Machinery},address={New York, NY, USA},keywords={Prompt engineering, Information Retrieval, Large Language Model, ReRanking},}
@inproceedings{jin2025rankflow,title={RankFlow: A Multi-Role Collaborative Reranking Workflow Utilizing Large Language Models},author={Jin, Can and Peng, Hongwu and Zhang, Anxiang and Chen, Nuo and Zhao, Jiahui and Xie, Xi and Li, Kuangzheng and Feng, Shuya and Zhong, Kai and Ding, Caiwen and Metaxas, Dimitris N},booktitle={Companion Proceedings of the ACM Web Conference 2025},location={Sydney, NSW, Australia},series={WWW '25},year={2025},doi={10.1145/3701716.3717575},isbn={979-8-4007-1331-6/2025/04},url={https://arxiv.org/abs/2502.00709},publisher={Association for Computing Machinery},address={New York, NY, USA},keywords={Information Retrieval, Large Language Model, ReRanking},}
@inproceedings{jin2024lot,author={Jin, Can and Che, Tong and Peng, Hongwu and Li, Yiyuan and Metaxas, Dimitris and Pavone, Marco},booktitle={Advances in Neural Information Processing Systems},editor={Globerson, A. and Mackey, L. and Belgrave, D. and Fan, A. and Paquet, U. and Tomczak, J. and Zhang, C.},pages={966--994},publisher={Curran Associates, Inc.},title={Learning from Teaching Regularization: Generalizable Correlations Should be Easy to Imitate},url={https://proceedings.neurips.cc/paper_files/paper/2024/file/01ce1ae7f94d139e4917f9e4425a4f38-Paper-Conference.pdf},volume={37},year={2024},}
@inproceedings{jin2024visual,title={Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective},author={Jin, Can and Huang, Tianjin and Zhang, Yihua and Pechenizkiy, Mykola and Liu, Sijia and Liu, Shiwei and Chen, Tianlong},booktitle={The 39th Annual AAAI Conference on Artificial Intelligence},year={2024},url={https://arxiv.org/pdf/2312.01397},}
@article{liu2024graph,title={Graph Canvas for Controllable 3D Scene Generation},author={Liu, Libin and Chen, Shen and Jia, Sen and Shi, Jingzhe and Jiang, Zhongyu and Jin, Can and Zongkai, Wu and Hwang, Jenq-Neng and Li, Lei},journal={arXiv preprint arXiv:2412.00091},year={2024},}